\begin{tabbing} w{-}machine{-}constraint($w$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=$\forall$$i$:Id.\+ \\[0ex]let ${\it Choose}$,${\it Trans}$,${\it Send}$ = w{-}machine($w$;$i$) in \\[0ex]$\forall$$t$:$\mathbb{N}$. \\[0ex]($\neg$($\uparrow$isnull(a($i$;$t$)))) \\[0ex]$\Rightarrow$ \=(($\lambda$$x$.s($i$;$t$+1).$x$) = ($\lambda$$x$,$q$. ${\it Trans}$(kind(a($i$;$t$)),val(a($i$;$t$)),$\lambda$$x$.s($i$;$t$).$x$,$x$,$q$ + 1))\+ \\[0ex]\& (\=($\uparrow$islocal(kind(a($i$;$t$))))\+ \\[0ex]$\Rightarrow$ ($\exists$\=$x$:$\mathbb{N}$\+ \\[0ex](($\uparrow$isl(${\it Choose}$(act(kind(a($i$;$t$))),$x$,$\lambda$$x$.s($i$;$t$).$x$(0)))) \\[0ex]c$\wedge$ (val(a($i$;$t$)) = outl(${\it Choose}$(act(kind(a($i$;$t$))),$x$,$\lambda$$x$.s($i$;$t$).$x$(0))))))) \-\-\\[0ex]\& m($i$;$t$) = ${\it Send}$(kind(a($i$;$t$)),val(a($i$;$t$)),$\lambda$$x$.s($i$;$t$).$x$(0))) \-\- \end{tabbing}